
CUDA COMPATIBLE GPU AS AN EFFICIENT HARDWARE
ACCELERATOR FOR AES CRYPTOGRAPHY

Svetlin A. Manavski

ITCIS, Sofia, Bulgaria, svetlin.a@manavski.com

ABSTRACT

This paper presents a study of the efficiency in applying modern
Graphics Processing Units in symmetric key cryptographic
solutions. It describes both traditional style approaches based on
the OpenGL graphics API and new ones based on the recent
technology trends of major hardware vendors. It presents an
efficient implementation of the Advanced Encryption Standard
(AES) algorithm in the novel CUDA platform by Nvidia. AES
is currently the most widely adopted modern symmetric key
encryption standard. The performance of the new fastest GPU
solution is compared with those of the reference sequential
implementations running on an Intel Pentium IV 3.0 GHz CPU.
Unlike previous research in this field, the results of this effort
show for the first time the GPU can perform as an efficient
cryptographic accelerator. The developed solutions run up to 20
times faster than OpenSSL and in the same range of
performance of existing hardware based implementations.

Index Terms— Cryptography, Data security, Graphics

1. INTRODUCTION

Graphics Processing Units have been the subject of extensive
research during the last few years and have been successfully
applied to general purpose applications out of the graphical
domain. The GPUs are designed to perform hundreds of billions
of floating point operations per second on their large bandwidth
on-board memory. Until recently, the only available
environments to program the GPU were the OpenGL and
Microsoft Direct3D Graphics APIs. The major drawbacks of
using either of these for general purpose computing are related
to the graphics nature of both environments. Mapping a general
purpose problem to the graphical domain is not always a simple
task and the final performance of the solution is dramatically
dependent on the chosen mapping.

The demand of efficient cryptographic solutions has been
continuously growing in the last decade as a consequence of
using the Internet in critical areas like business, government and
healthcare. So many hardware based SSL acceleration solutions
have been studied and proposed both in the research and the
industrial field. However, efficient GPU based solutions of the
major cryptography algorithms were not actually feasible till
now. The main reasons are the following:

• missing internal integer representations of the data
and relative bitwise operations

• limited programming model of the Graphics API,
missing fundamental operations like "scatter"

• restricted memory model of the graphics API
• overhead of the fixed graphics pipeline

Hardware GPU vendors are currently working on relaxing many
of these restrictions. Recent announcements of technologies like

CTM [10] by AMD and CUDA [9] by NVidia proved their
effort to extend both the programming and memory models,
specifically to General Purpose Computation on Graphics
Processing Units or GPGPU [6]. Furthermore, these
environments provide direct access to the underlying hardware.
This approach enables a new vision of the GPU as an efficient
cryptographic acceleration unit. Here is presented an effort in
developing novel approaches in implementation of symmetric
key algorithms on the GPU, in order to prove its general
applicability as an efficient cryptographic co-processor. The
main focus is on the Advanced Encryption Standard or AES [2]
because it is a widely adopted symmetric key cipher standard.

2. RELATED WORKS

This section provides some references to previous work related
to developing cryptography solutions both in dedicated
hardware and on the GPU.

2.1. Hardware based solutions

Since 2001, when AES was accepted as a FIPS standard [2], a
lot of hardware implementations, using ASIC and FPGA
devices, have been proposed. C. Su et al. [14], J. Wolkerstorfer
et al.[15], Hodjat et al.[16], using particular S-box
optimizations, rather than pipelining, or combination of S-box
and MixColumns, called T-box, provided throughput rates from
1 to 70 Gbit/s.

The presented CUDA-AES implementation, tested on a
NVidia GeForce 8800 GTX, performs a peak throughput of
8.28 Gbit/s. This result, interestingly obtained with commodity
hardware, is in the same range of the above hardware based
solutions. Furthermore, the implementation could linearly
improve its throughput exploiting the parallelism of several
GPU devices, when available on the same machine.

2.2. Cryptography on the GPU

The only significant attempt to implement symmetric ciphers on
the GPU was made by D.Cook et al.[8][13]. Their effort was
based on mapping the AES cipher to the standard fixed graphics
pipeline using OpenGL. The results of this paper were both
limited by the performance of the available hardware, and the
limited functionality achievable without exploiting the
programmable GPU shaders. Their implementation performed
up to 1.53 Mbits/s on NVidia GeForce 3, which was too far
from the 64 Mbits/s they reached on the CPU Pentium IV 1.8
GHz. There are not any further known successful attempts in
competing with the modern CPU in optimized solutions of
largely used cryptography standard algorithms. While the
traditional graphics pipeline architecture limits the potential
performance of the block cipher key systems like AES, it makes
practically unsuccessful any approach in implementing
algorithms heavily depending upon scatter operations like RSA.

651-4244-1236-6/07/$25.00 © 2007 IEEE

2007 IEEE International Conference on Signal Processing and Communications (ICSPC 2007), 24-27 November 2007, Dubai, United Arab Emirates

3. THE GRAPHICS PROGRAMMING UNIT

3.1. The traditional GPU programming model

This section is a brief overview of the traditional OpenGL
graphics pipeline. It is now present in all the existing hardware
up to the recent NVidia G80 unified architecture platform.

In the graphics pipeline, there are three kinds of processor
units. The rasterizer is the only fixed functionality processing
stage while both the vertex and the fragment processors are
programmable in recent architectures. The vertex processors
allow for a program to be applied to each vertex in the object,
then each group of three vertices is used to compute a triangle,
and from this triangle a stream of fragments is generated.
Fragment processors, which transform fragments, are able to
fetch additional data, so these are capable of gather, but the
output address of the fragment is always determined before the
fragment is processed. Therefore, these units are not natively
capable of scatter. First of all, the input data mapped to the
graphical domain must be transferred to the texture memory and
the vertex buffer of the GPU. The texture memory is the basic
memory unit where the whole set of the input data is usually
stored. For the purpose of the GPGPU applications most of the
operations needed to solve the problem are actually performed
in the fragment processing unit. There are two main reasons for
that. The first is there are usually more fragment processors in
the typical GPU. The second one is that the fragment processing
is near the end of the pipeline so its output is easier to get
straightforward to the memory either as a final result or as an
intermediate input to the next processing stage.

3.2. CUDA and the new GPGPU programming model

The two major GPU vendors, NVidia and AMD recently
announced their new developing platforms, respectively CUDA
[9] and CTM [10]. Unlike previous programming models, these
are proprietary approaches, designed to natively access the
graphics hardware of the only specific vendor. So these
platforms are incompatible between them. While the first,
CUDA is announced to be an extension to the C programming
language, the other approach, CTM is a virtual machine running
proprietary assembler code. However, both platforms provide
completely new programming models, aiming to relax the
important restrictions on the GPGPU applications, imposed by
the traditional pipeline and the relative graphics-oriented
programming interfaces. In order to design the efficient AES
solution, Nvidia GeForce 8800 was selected and its CUDA
development platform. It is the first available GPU on the
market capable of performing natively programmable logical
bitwise operations on internal integer representation of the data.

Programming through CUDA, the GPU can be seen as a
device capable of executing a very high number of threads in
parallel. A kernel of code can be launched on different threads
and on different blocks of threads, called grid. Threads from the
same block share data through a fast shared on-chip memory
and can be synchronized through apposite synchronization
points. In CUDA the programmer has access to the device’s
DRAM and on-chip memory through a number of memory
spaces. The choice of the memory to use depends on different
factors as speed, amount of memory needed and operations to
do on stored data. This new architecture allows to access
memory in a really general way so both scatter and gather
capabilities are available. But the overall performance of the
applications dramatically depends on the strategy of use of the
memory model mentioned above.

4. BLOCK CIPHER ALGORITHMS AND AES
BACKGROUND

A block cipher algorithm is a symmetric key cipher operation
on a fixed number of bits, named block. It takes a n-bits block
of plain text as input, and outputs a corresponding n-bits block
of ciphered text. The transformation depends on a second input
which is the secret key. Decryption is similar. Messages longer
than n bits are divided into n-bits blocks, padding the last if
necessary, each ciphered/deciphered separately. AES is the
most recent symmetric key algorithm standard used in several
security protocols. It was announced by National Institute of
Standards and Technology (NIST) as U.S. FIPS PUB 197 [2] in
November 26, 2001, and it became effective as a standard in
May 26, 2002. The cipher is based on the Rijndael algorithm
developed by two Belgian cryptographers, Joan Daemen and
Vincent Rijmen, and it accepts a fixed block size of 128 bits and
a key size of 128, 192 or 256 bits. AES encryption consists of a
variable number of rounds, depending on the key length,
operating on a block of 4x4 bytes, termed state. Each round is a
sequence of four stages: AddRoundKey, SubBytes, ShiftRows,
MixColumns. Before starting the cipher the key bits must be
expanded using a precise key schedule. For complete details
about AES refer to [1] and [2]. The CUDA-AES
implementation is based on a combination of the round stages,
which allows a very fast execution on processors with word
length of 32 bits, as described in [1]. If we call a the round
input, expressing one column of the round output e in terms of
bytes of a we have:

[] [] [] [] jjjjjj kaTaTaTaTe ⊕⊕⊕⊕= +++ 3,332,221,11,00 (1)

where T[] is a look-up table, ⊕ means XOR and jk is one

column of the stage key. This solution takes only 4 look-ups and
4 XORs per column per round.

5. THE IMPLEMENTATIONS OF AES

This section describes two completely different approaches to
address the AES problem on the graphics hardware. Both
implementations do not focus on computing the key scheduling
but on the main cryptography algorithm. Key scheduling is a
procedure of limited number of operations that would not
exploit the real GPU processing power. For this reason, it was
implemented on the CPU leaving to the graphics card the more
computationally intensive tasks.

5.1. The traditional style OpenGL based implementation

A framework of C++ classes was developed, which setups the
OpenGL environment and allows to program transparently the
fragment processors in several shader programming languages.
The same algorithms was developed and tested in GLSL [4],
Cg [3] and ARB Assembly [4]. The native internal
representation of the data in the OpenGL memory model is the
floating point format, which is unsuitable for the purpose of
cryptography. Thus every single byte of the input was mapped
in an fp16 number (16 bits floating point number) of the texture
memory. This allows us to have enough precision during
operations on these numbers given that the useful values are
limited in the range 0 to 255. The best found OpenGL
implementation runs only one AES round in a single kernel call.
Each GPU thread computes four components of the AES
internal state and takes only four values of the input. Each
subsequent 16 entries of the input are mapped to four
neighbouring texels in the respective R, G, B and A values. In
this approach, as in previous attempts [13], the CPU is still used

66

to subsequently call the AES rounds to setup the output of each
round as the input of the next one, although the actual load to
make the algorithm computations is all on the GPU. Another
major problem in implementing cryptography on traditional
GPU architectures is the unavailability of the bitwise logical
operations in the programmable shaders. The first option was to
enable the native XOR operation while storing data to the
output frame buffer, but this solution, faster in terms of time
needed to perform the XOR operation, requires to split the
single AES round in further four shaders. This because it is
needed to be able to compute the T-boxes separately before
storing the outputs to the framebuffer with XOR operation
enabled on it. The resulting solution would be actually
conceptually similar to the work of D.Cook et al [13], which
concludes the CPU keeps loaded during all the execution.
Alternatively the implementation adopts a square look-up XOR
table of 256x256 entries to implement 8 bit xor bitwise
operations computing the function on four values at a time. To
further benefit of the limited cache size on the GPU, the three S-
boxes needed to encrypt (and the five S-boxes needed to
decrypt) are included in the free colour components of the same
texels, used to map the XOR look-up table. The results of
running the most optimized implementation on the ATI X1900
platform, which results to be the ARB Assembly one, are
compared in Section 6 to the native CUDA implementation on
NVidia G80.

5.2. Efficient CUDA based implementation on G80

According to the programming model of CUDA, the developer
has a lot of freedom on, for example, the choice and the type of
the memory spaces, the data shared among threads, the
dimension of the block of threads, and so on. But this approach
leads to a considerable complexity in designing an efficient
application compared to the common programming model of
the CPU.

The CUDA-AES implementation fully benefits of the
most optimized known AES techniques, designed for the 32 bit
processors as described in Section 4. Given the flexibility of the
memory model, it is possible to efficiently use the four T-look-
up tables each one containing 256 entries of 32 bits each. Unlike
previous GPU hardware, G80 is a scalar processor, so there is
no need to combine instructions in vector operations, in order to
get the full processing power. Furthermore, the native
availability of the 32 bit logical XOR operation on G80 speeds
up by orders of magnitude the execution of that fundamental
operation of the cryptographic theory. Thus, a single AES round
on a state can be done with 16 table look-ups and 16 32-bit
exclusive-or operations (four iterations of the equation (1)).

First of all, the input data and the expanded key are stored
in the GPU global memory space. As the final results show,
moving the data to and back from the device memory may
become the slowest operation when doing cryptography on the
GPU. It is due to the bandwidth of the PCIExpress interface
which is only about 3,2 GB/s compared to the 50 GB/s of the
onboard memory of the GeForce 8800 graphics card. The pre-
computed T-boxes are pre-loaded in the specific constant
memory of the device. The constant memory is cached and the
look-up table fully matches the size of the cache. The input data
is then divided in chunks of 1024 bytes which are encrypted or
decrypted completely in parallel. One CUDA block of threads is
responsible for computing one chunk of the input. The block is
composed of 256 GPU threads. An exhaustive research has
indicated that size to lead the fastest implementation. When
running the kernel code on the device, performance
improvement can be observed as the number of blocks
increases. So bigger input sizes lead to better performance.

Every GPU thread of the block computes four output bytes in
each AES round, so four threads encrypt/decrypt the whole
input state. Threads from the same block need to share and to
frequently access information of the AES expanded key. For
this reason it is loaded in shared memory together with the
portion of input processed by that block. More precisely, two
arrays of 1KB shared memory are used for the input, reading
data from the first and saving results of each AES round to the
second one. Then the arrays are swapped for the successive
round. This strategy allows to complete the encryption of the
input chunk without exiting the kernel. So it is done without
using the CPU to manage an external for loop to launch
sequentially all the AES rounds. At the end of the computation,
the resulted output data is written again in the global device
memory and then returned to the CPU.

The implementation described above delivered a peak
performance of 5,72 Gbit/s in encrypting an 8MB input with
AES-256. Some further improvements were then applied, which
lead to the final peak performance of 6,65 Gbit/s in the same
conditions of the strongest AES-256. The direction was to
research strategies to reduce the usage of the shared memory.
The GeForce 8800 shared memory is divided into equally-sized
memory modules, called banks, which can be accessed
simultaneously. But if two addresses of a memory request fall in
the same module, there is a bank conflict and the accesses have
to be serialized. This behavior may slow down the performance
because of the access pattern to the expanded AES key.
Furthermore in order to benefit of the shared memory the key
must be loaded there at the beginning of the execution of each
block of threads. An alternative is to store the expanded key
once in a texture memory which is cached as well. A random
texture memory access is available directly by all the GPU
threads and by the CPU to store the key. The limited size of the
expanded key ensures it is always completely stored in the
texture cache.

Furthermore, must be noticed this approach allows for the
textures of third parties applications to be directly encrypted on
the GPU. In OpenGL this is not possible because it does not
allow to access the different bytes that compose a single texture
value. But in CUDA, unlike OpenGL, it is possible to consider
the single fp16/fp32 number as a sequence of separated bytes
which may be encrypted. To encode textures this way does not
even require to move data to and from the GPU and the host
memory.

6. PERFORMANCE ANALYSIS

This section compares the performances of the final
implementations of the AES algorithm (Figures 1, 2 and 3). The
tests were conducted using an Intel Pentium IV, 3.0 GHz CPU,
an NVIDIA GeForce 8800 GTX and an ATI X1900. As it can
be seen, a comparison has been made between GPUs and a CPU
implementation based on the OpenSSL library. Both the internal
GPU elaboration time is shown and the total time, that includes
the time needed for the download and read-back operations (that
means copying data from the host memory to the GPU device
and back). The CUDA-AES implementation on NVIDIA card is
faster than the CPU on every input size with reference both to
the internal GPU and to the total time. A peak throughput rate
of 8.28 Gbit/s is achieved with an input size of 8MB. In that
case the GPU is 19.60 times faster than the CPU.

The ATI X1900 implementation is in OpenGL and ARB
Assembly shaders. In this case there are not any of the bitwise
logical operations so it is based on a look-up table with a
precompiled XOR. Despite it, when the input size begins to
increase the GPU becomes competitive. Unfortunately, this
result is vanished by the enormous amount of time spent for

67

download and read-back operations. M. Houston in [11] proves
that ATI X1900 is effectively affected by poor performances for
this kind of operations, especially for the read-back one.

Figure 1. Performance table for AES 256. These

results are referred to the encryption phase, but decryption
performance is nearly the same.

Figure 2. Performance table for AES 128.

Figure 3. Performance Chart for AES 256

7. CONCLUSIONS AND FUTURE WORK

The presented the most efficient currently known approaches in
encryption and decryption of messages with AES on
programmable graphics processing units. While the study
suggested that the traditional graphics hardware architectures
could now be compared with optimized sequential solutions on
the CPU, it definitely proved that the novel unified architectures
like G80 are needed to significantly outperform it in the field of

symmetric cryptography. Unlike previous related work, for the
first time a GPU implementation of AES performs the
encryption and decryption of the input data without the CPU to
keep busy in the meantime. So, this effort has to be considered
as the proof that the modern unified GPU architecture can
perform as an efficient cryptographic acceleration board. Future
work will include efficient implementations of other common
symmetric algorithms. GPU implementations of hashing and
public key algorithms may also be implemented, in order to
create a complete cryptographic framework accelerated by the
GPU.

8. REFERENCES

[1] J. Daemen, V. Rijmen, “AES Proposal: Rijndael”. Original
AES Submission to NIST, 1999.
[2] National Institute of Standards and Technology (NIST),
“FIPS 197: Advanced Encryption Standard (AES)”, 2001.
[3] R. Fernando, M. Kilgard, “Cg Tutorial, The: The Definitive
Guide to Programmable Real-Time Graphics”, ISBN
0321194969, Addison-Wesley, New York, 2003.
[4] OpenGL Architecture Review Board, M. Woo, J. Neider, T.
Davis, D. Shreiner, “The OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 2”, 5th edition.
ISBN 0321335732, Addison-Wesley, New York, 2005.
[5] N. Sklavos, O. Koufopavlou, "Architectures and VLSI
Implementations of the AES-Proposal Rijndael", IEEE
Transactions on Computers, Vol. 51, Issue 12, pp. 1454-1459,
2002.
[6] General Purpose Computation Using Graphics Hardware,
http://www.gpgpu.org.
[7] OpenSSL Open Source Project, http://www.openssl.org.
[8] D. L. Cook, A. D. Keroymytis, “Cryptographics: Exploiting
Graphics Cards for Security”, Advancements in Information
Security series, Springer, 2006.
[9] NVidia CUDA ,
http://developer.NVidia.com/object/CUDA.html.
[10] AMD CTM,
http://ati.amd.com/companyinfo/researcher/documents.html.
[11] M. Houston, “Understanding GPUs through
Benchmarking”. Supercomputing Conference, Tampa FL, 2006.
[12] I. Buck, A. Lefohn, P. McCormick, J. Owens, T. Purcell,
R. Strodka, “General Purpose Computation on Graphics
Hardware”. IEEE Visualization 05, Minneapolis, USA, 2005.
[13] D. L. Cook, J. Ioannidis, A. D. Keromytis, J. Luck,
“CryptoGraphics: Secret Key Cryptography Using Graphics
Cards”. RSA Conference, Cryptographer’s Track (CT-RSA),
2005.
[14] C. Su, T. Lin, C. Huang, C. Wu, “A High-Throughput
Low-Cost AES processor”. IEEE Communications Magazine,
vol. 41, no. 12, pp. 86-91, 2003.
[15] J. Wolkerstorfer, E. Oswald, M. Lamberger, “An ASIC
Implementation of the AES Sboxes”. RSA Conference 02, San
Jose CA, 2002.
[16] A. Hodjat, I. Verbauwhede, “Minimum Area Cost for a 30
to 70 Gbits/s AES Processor”. IEEE Computer Society Annual
Symposium on VLSI (ISVLSI 2004), Eerging Trends in VLSI
System Design, pp 83-88, 2004.

68

