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ABSTRACT 

 
This paper presents a study of the efficiency in applying modern 
Graphics Processing Units in symmetric key cryptographic 
solutions. It describes both traditional style approaches based on 
the OpenGL graphics API and new ones based on the recent 
technology trends of major hardware vendors. It presents an 
efficient implementation of the Advanced Encryption Standard 
(AES) algorithm in the novel CUDA platform by Nvidia. AES 
is currently the most widely adopted modern symmetric key 
encryption standard. The performance of the new fastest GPU 
solution is compared with those of the reference sequential 
implementations running on an Intel Pentium IV 3.0 GHz CPU. 
Unlike previous research in this field, the results of this effort 
show for the first time the GPU can perform as an efficient 
cryptographic accelerator. The developed solutions run up to 20 
times faster than OpenSSL and in the same range of 
performance of existing hardware based implementations. 
 

Index Terms— Cryptography, Data security, Graphics 

 

1. INTRODUCTION 
 
Graphics Processing Units have been the subject of extensive 
research during the last few years and have been successfully 
applied to general purpose applications out of the graphical 
domain. The GPUs are designed to perform hundreds of billions 
of floating point operations per second on their large bandwidth 
on-board memory. Until recently, the only available 
environments to program the GPU were the OpenGL and 
Microsoft Direct3D Graphics APIs. The major drawbacks of 
using either of these for general purpose computing are related 
to the graphics nature of both environments. Mapping a general 
purpose problem to the graphical domain is not always a simple 
task and the final performance of the solution is dramatically 
dependent on the chosen mapping. 

The demand of efficient cryptographic solutions has been 
continuously growing in the last decade as a consequence of 
using the Internet in critical areas like business, government and 
healthcare. So many hardware based SSL acceleration solutions 
have been studied and proposed both in the research and the 
industrial field. However, efficient GPU based solutions of the 
major cryptography algorithms were not actually feasible till 
now. The main reasons are the following: 

• missing internal integer representations of the data 
and relative bitwise operations 

• limited programming model of the Graphics API, 
missing fundamental operations like "scatter" 

• restricted memory model of the graphics API 
• overhead of the fixed graphics pipeline 

Hardware GPU vendors are currently working on relaxing many 
of these restrictions. Recent announcements of technologies like 

CTM [10] by AMD and CUDA [9] by NVidia proved their 
effort to extend both the programming and memory models, 
specifically to General Purpose Computation on Graphics 
Processing Units or GPGPU [6]. Furthermore, these 
environments provide direct access to the underlying hardware. 
This approach enables a new vision of the GPU as an efficient 
cryptographic acceleration unit. Here is presented an effort in 
developing novel approaches in implementation of symmetric 
key algorithms on the GPU, in order to prove its general 
applicability as an efficient cryptographic co-processor. The 
main focus is on the Advanced Encryption Standard or AES [2] 
because it is a widely adopted symmetric key cipher standard. 
 

2. RELATED WORKS 
 
This section provides some references to previous work related 
to developing cryptography solutions both in dedicated 
hardware and on the GPU. 
 
2.1. Hardware based solutions 
 
Since 2001, when AES was accepted as a FIPS standard [2], a 
lot of hardware implementations, using ASIC and FPGA 
devices, have been proposed. C. Su et al. [14],  J. Wolkerstorfer 
et al.[15], Hodjat et al.[16], using particular S-box 
optimizations, rather than pipelining, or combination of S-box 
and MixColumns, called T-box, provided throughput rates from 
1 to 70 Gbit/s. 

The presented CUDA-AES implementation, tested on a 
NVidia GeForce 8800 GTX, performs a peak throughput of 
8.28 Gbit/s. This result, interestingly obtained with commodity 
hardware, is in the same range of the above hardware based 
solutions. Furthermore, the implementation could linearly 
improve its throughput  exploiting the parallelism of several 
GPU devices, when available on the same machine. 
 
2.2. Cryptography on the GPU 
 
The only significant attempt to implement symmetric ciphers on 
the GPU was made by D.Cook et al.[8][13]. Their effort was 
based on mapping the AES cipher to the standard fixed graphics 
pipeline using OpenGL. The results of this paper were both 
limited by the performance of the available hardware, and the 
limited functionality achievable without exploiting the 
programmable GPU shaders. Their implementation performed 
up to 1.53 Mbits/s on NVidia GeForce 3, which was too far 
from the 64 Mbits/s they reached on the CPU Pentium IV 1.8 
GHz. There are not any further known successful attempts in 
competing with the modern CPU in optimized solutions of 
largely used cryptography standard algorithms. While the 
traditional graphics pipeline architecture limits the potential 
performance of the block cipher key systems like AES, it makes 
practically unsuccessful any approach in implementing 
algorithms heavily depending upon scatter operations like RSA. 
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3. THE GRAPHICS PROGRAMMING UNIT 
 
3.1. The traditional GPU programming model 
 
This section is a brief overview of the traditional OpenGL 
graphics pipeline. It is now present in all the existing hardware 
up to the recent NVidia G80 unified architecture platform.  

In the graphics pipeline, there are three kinds of processor 
units. The rasterizer is the only fixed functionality processing 
stage while both the vertex and the fragment processors are 
programmable in recent architectures. The vertex processors 
allow for a program to be applied to each vertex in the object, 
then each group of three vertices is used to compute a triangle, 
and from this triangle a stream of fragments is generated. 
Fragment processors, which transform fragments, are able to 
fetch additional data, so these are capable of gather, but the 
output address of the fragment is always determined before the 
fragment is processed. Therefore, these units are not natively 
capable of scatter. First of all, the input data mapped to the 
graphical domain must be transferred to the texture memory and 
the vertex buffer of the GPU. The texture memory is the basic 
memory unit where the whole set of the input data is usually 
stored. For the purpose of the GPGPU applications most of the 
operations needed to solve the problem are actually performed 
in the fragment processing unit. There are two main reasons for 
that. The first is there are usually more fragment processors in 
the typical GPU. The second one is that the fragment processing 
is near the end of the pipeline so its output is easier to get 
straightforward to the memory either as a final result or as an 
intermediate input to the next processing stage. 
 
3.2. CUDA and the new GPGPU programming model 
 
The two major GPU vendors, NVidia and AMD recently 
announced their new developing platforms, respectively CUDA 
[9] and CTM [10]. Unlike previous programming models, these 
are proprietary approaches, designed to natively access the 
graphics hardware of the only specific vendor. So these 
platforms are incompatible between them. While the first, 
CUDA is announced to be an extension to the C programming 
language, the other approach, CTM is a virtual machine running 
proprietary assembler code. However, both platforms provide 
completely new programming models, aiming to relax the 
important restrictions on the GPGPU applications, imposed by 
the traditional pipeline and the relative graphics-oriented 
programming interfaces. In order to design the efficient AES 
solution, Nvidia GeForce 8800 was selected and its CUDA 
development platform. It is the first available GPU on the 
market capable of performing natively programmable logical 
bitwise operations on internal integer representation of the data. 

Programming through CUDA, the GPU can be seen as a 
device capable of executing a very high number of threads in 
parallel. A kernel of code can be launched on different threads 
and on different blocks of threads, called grid. Threads from the 
same block share data through a fast shared on-chip memory 
and can be synchronized through apposite synchronization 
points. In CUDA the programmer has access to the device’s 
DRAM and on-chip memory through a number of memory 
spaces. The choice of the memory to use depends on different 
factors as speed, amount of memory needed and  operations to 
do on stored data. This new architecture allows to access 
memory in a really general way so both scatter and gather 
capabilities are available. But the overall performance of the 
applications dramatically depends on the strategy of use of the 
memory model mentioned above. 
 

4. BLOCK CIPHER ALGORITHMS AND AES 
BACKGROUND 

 
A block cipher algorithm is a symmetric key cipher operation 
on a fixed number of bits, named block. It takes a n-bits block 
of plain text as input, and outputs a corresponding n-bits block 
of ciphered text. The transformation depends on a second input 
which is the secret key. Decryption is similar. Messages longer 
than n bits are divided into n-bits blocks, padding the last if 
necessary, each ciphered/deciphered separately. AES is the 
most recent symmetric key algorithm standard used in several 
security protocols. It was announced by National Institute of 
Standards and Technology (NIST) as U.S. FIPS PUB 197 [2] in 
November 26, 2001, and it became effective as a standard in 
May 26, 2002. The cipher is based on the Rijndael algorithm 
developed by two Belgian cryptographers, Joan Daemen and 
Vincent Rijmen, and it accepts a fixed block size of 128 bits and 
a key size of 128, 192 or 256 bits. AES encryption consists of a 
variable number of rounds, depending on the key length, 
operating on a block of 4x4 bytes, termed state. Each round is a 
sequence of four stages: AddRoundKey, SubBytes, ShiftRows, 
MixColumns. Before starting the cipher the key bits must be 
expanded using a precise key schedule. For complete details 
about AES refer to [1] and [2]. The CUDA-AES 
implementation is based on a combination of the round stages, 
which allows a very fast execution on processors with word 
length of 32 bits, as described in [1]. If we call a the round 
input, expressing one column of the round output e in terms of 
bytes of a we have: 
 

[ ] [ ] [ ] [ ] jjjjjj kaTaTaTaTe ⊕⊕⊕⊕= +++ 3,332,221,11,00  (1) 

where T[ ] is a look-up table, ⊕  means XOR and jk  is one 

column of the stage key. This solution takes only 4 look-ups and 
4 XORs per column per round.  
 

5. THE IMPLEMENTATIONS OF AES 
 
This section describes two completely different approaches to 
address the AES problem on the graphics hardware. Both 
implementations do not focus on computing the key scheduling 
but on the main cryptography algorithm. Key scheduling is a 
procedure of limited number of operations that would not 
exploit the real GPU processing power. For this reason, it was 
implemented on the CPU leaving to the graphics card the more 
computationally intensive tasks. 
 
5.1. The traditional  style OpenGL based implementation 
 
A framework of C++ classes was developed, which setups the 
OpenGL environment and allows to program transparently the 
fragment processors in several shader programming languages. 
The same algorithms was developed and tested in  GLSL [4],  
Cg [3] and ARB Assembly [4]. The native internal 
representation of the data in the OpenGL memory model is the 
floating point format, which is unsuitable for the purpose of 
cryptography. Thus every single byte of the input was mapped 
in an fp16 number  (16 bits floating point number) of the texture 
memory. This allows us to have enough precision during 
operations on these numbers given that the useful values are 
limited in the range 0 to 255. The best found OpenGL 
implementation runs only one AES round in a single kernel call. 
Each GPU thread computes four components of the AES 
internal state and takes only four values of the input. Each 
subsequent 16 entries of the input are mapped to four 
neighbouring texels in the respective R, G, B and A values. In 
this approach, as in previous attempts [13], the CPU is still used 
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to subsequently call the AES rounds to setup the output of each 
round as the input of the next one, although the actual load to 
make the algorithm computations is all on the GPU. Another 
major problem in implementing cryptography on traditional 
GPU architectures is the unavailability of the bitwise logical 
operations in the programmable shaders. The first option was to 
enable the native XOR operation while storing data to the 
output frame buffer, but this solution, faster in terms of time 
needed to perform the XOR operation, requires to split the 
single AES round in further four shaders. This because it is 
needed to be able to compute the T-boxes separately before 
storing the outputs to the framebuffer with XOR operation 
enabled on it. The resulting solution would be actually 
conceptually similar to the work of D.Cook et al [13], which 
concludes the CPU keeps loaded during all the execution. 
Alternatively the implementation adopts a square look-up XOR 
table of 256x256 entries to implement 8 bit xor bitwise 
operations computing the function on four values at a time. To 
further benefit of the limited cache size on the GPU, the three S-
boxes needed to encrypt (and the five S-boxes needed to 
decrypt) are included in the free colour components of the same 
texels, used to map the XOR look-up table. The results of 
running the most optimized implementation on the ATI X1900 
platform, which results to be the ARB Assembly one, are 
compared in Section 6 to the native CUDA implementation on 
NVidia G80. 
 
5.2. Efficient CUDA based implementation on G80 
 
According to the programming model of CUDA, the developer 
has a lot of freedom on, for example, the choice and the type of 
the memory spaces, the data shared among threads, the 
dimension of the block of threads, and so on. But this approach 
leads to a considerable complexity in designing an efficient 
application compared to the common programming model of 
the CPU.  

The CUDA-AES implementation fully benefits of the 
most optimized known AES techniques, designed for the 32 bit 
processors as described in Section 4. Given the flexibility of the 
memory model, it is possible to efficiently use the four T-look-
up tables each one containing 256 entries of 32 bits each. Unlike 
previous GPU hardware, G80 is a scalar processor, so there is 
no need to combine instructions in vector operations, in order to 
get the full processing power. Furthermore, the native 
availability of the 32 bit logical XOR operation on G80 speeds 
up by orders of magnitude the execution of that fundamental 
operation of the cryptographic theory. Thus, a single AES round 
on a state can be done with 16 table look-ups and 16 32-bit 
exclusive-or operations (four iterations of the equation (1)). 

First of all, the input data and the expanded key are stored 
in the GPU global memory space. As the final results show, 
moving the data to and back from the device memory may 
become the slowest operation when doing cryptography on the 
GPU. It is due to the bandwidth of the PCIExpress interface 
which is only about 3,2 GB/s compared to the 50 GB/s of the 
onboard memory of the GeForce 8800 graphics card. The pre-
computed T-boxes are pre-loaded in the specific constant 
memory of the device. The constant memory is cached and the 
look-up table fully matches the size of the cache. The input data 
is then divided in chunks of 1024 bytes which are encrypted or 
decrypted completely in parallel. One CUDA block of threads is 
responsible for computing one chunk of the input. The block is 
composed of 256 GPU threads. An exhaustive research has 
indicated that size to lead the fastest implementation. When 
running the kernel code on the device, performance 
improvement can be observed as the number of blocks 
increases. So bigger input sizes lead to better performance. 

Every GPU thread of the block computes four output bytes in 
each AES round, so four threads encrypt/decrypt the whole 
input state. Threads from the same block need to share and to 
frequently access information of the AES expanded key. For 
this reason it is loaded in shared memory together with the 
portion of input processed by that block. More precisely, two 
arrays of 1KB shared memory are used for the input, reading 
data from the first and saving results of each AES round to the 
second one. Then the arrays are swapped for the successive 
round. This strategy allows to complete the encryption of the 
input chunk without exiting the kernel. So it is done without 
using the CPU to manage an external for loop to launch 
sequentially all the AES rounds. At the end of the computation, 
the resulted output data is written again in the global device 
memory and then returned to the CPU. 

The implementation described above delivered a peak 
performance of 5,72 Gbit/s in encrypting an 8MB input with 
AES-256. Some further improvements were then applied, which 
lead to the final peak performance of 6,65 Gbit/s in the same 
conditions of the strongest AES-256. The direction was to 
research strategies to reduce the usage of the shared memory. 
The GeForce 8800 shared memory is divided into equally-sized 
memory modules, called banks, which can be accessed 
simultaneously. But if two addresses of a memory request fall in 
the same module, there is a bank conflict and the accesses have 
to be serialized. This behavior may slow down the performance 
because of the access pattern to the expanded AES key. 
Furthermore in order to benefit of the shared memory the key 
must be loaded there at the beginning of the execution of each 
block of threads. An alternative is to store the expanded key 
once in a texture memory which is cached as well. A random 
texture memory access is available directly by all the GPU 
threads and by the CPU to store the key. The limited size of the 
expanded key ensures it is always completely stored in the 
texture cache.  

Furthermore, must be noticed this approach allows for the 
textures of third parties applications to be directly encrypted on 
the GPU. In OpenGL this is not possible because it does not 
allow to access the different bytes that compose a single texture 
value. But in CUDA, unlike OpenGL, it is possible to consider 
the single fp16/fp32 number as a sequence of separated bytes 
which may be encrypted. To encode textures this way does not 
even require to move data to and from the GPU and the host 
memory. 
 

6. PERFORMANCE ANALYSIS 
 
This section compares the performances of the final 
implementations of the AES algorithm (Figures 1, 2 and 3). The 
tests were conducted using an Intel Pentium IV, 3.0 GHz CPU, 
an NVIDIA GeForce 8800 GTX and an ATI X1900. As it can 
be seen, a comparison has been made between GPUs and a CPU 
implementation based on the OpenSSL library. Both the internal 
GPU elaboration time is shown and the total time, that includes 
the time needed for the download and read-back operations (that 
means copying data from the host memory to the GPU device 
and back). The CUDA-AES implementation on NVIDIA card is 
faster than the CPU on every input size with reference both to 
the internal GPU and to the total time. A peak throughput rate 
of 8.28 Gbit/s is achieved with an input size of 8MB. In that 
case the GPU is 19.60 times faster than the CPU.   

The ATI X1900 implementation is in OpenGL and ARB 
Assembly shaders. In this case there are not any of the bitwise 
logical operations so it is based on a look-up table with a 
precompiled XOR. Despite it, when the input size begins to 
increase the GPU becomes competitive. Unfortunately, this 
result is vanished by the enormous amount of time spent for 
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download and read-back operations. M. Houston in [11] proves 
that ATI X1900 is effectively affected by poor performances for 
this kind of operations, especially for the read-back one. 
 

 
Figure 1. Performance table for AES 256. These 

results are referred to the encryption phase, but decryption 
performance is nearly the same. 

 

 
Figure 2. Performance table for AES 128. 

 

 
Figure 3. Performance Chart for AES 256 

 
 

7. CONCLUSIONS AND FUTURE WORK 
 
The presented the most efficient currently known approaches in 
encryption and decryption of messages with AES on 
programmable graphics processing units. While the study 
suggested that the traditional graphics hardware architectures 
could now be compared with optimized sequential solutions on 
the CPU, it definitely proved that the novel unified architectures 
like G80 are needed to significantly outperform it in the field of 

symmetric cryptography. Unlike previous related work, for the 
first time a GPU implementation of AES performs the 
encryption and decryption of the input data without the CPU to 
keep busy in the meantime. So, this effort has to be considered 
as the proof that the modern unified GPU architecture can 
perform as an efficient cryptographic acceleration board. Future 
work will include efficient implementations of other common 
symmetric algorithms. GPU implementations of hashing and 
public key algorithms may also be implemented, in order to 
create a complete cryptographic framework accelerated by the 
GPU. 
 

8. REFERENCES 
 
[1] J. Daemen, V. Rijmen, “AES Proposal: Rijndael”. Original 
AES Submission to NIST, 1999. 
[2] National Institute of Standards and Technology (NIST), 
“FIPS 197: Advanced Encryption Standard (AES)”, 2001. 
[3] R. Fernando, M. Kilgard, “Cg Tutorial, The: The Definitive 
Guide to Programmable Real-Time Graphics”, ISBN 
0321194969, Addison-Wesley, New York, 2003. 
[4] OpenGL Architecture Review Board, M. Woo, J. Neider, T. 
Davis, D. Shreiner, “The OpenGL Programming Guide: The 
Official Guide to Learning OpenGL, Version 2”, 5th edition. 
ISBN 0321335732, Addison-Wesley, New York, 2005. 
[5] N. Sklavos, O. Koufopavlou,  "Architectures and VLSI 
Implementations of the AES-Proposal Rijndael", IEEE 
Transactions on Computers, Vol. 51, Issue 12, pp. 1454-1459, 
2002. 
[6] General Purpose Computation Using Graphics Hardware, 
http://www.gpgpu.org. 
[7] OpenSSL Open Source Project, http://www.openssl.org. 
[8] D. L. Cook, A. D. Keroymytis, “Cryptographics: Exploiting 
Graphics Cards for Security”, Advancements in Information 
Security series, Springer, 2006. 
[9] NVidia CUDA , 
http://developer.NVidia.com/object/CUDA.html. 
[10] AMD CTM, 
http://ati.amd.com/companyinfo/researcher/documents.html. 
[11] M. Houston, “Understanding GPUs through 
Benchmarking”. Supercomputing Conference, Tampa FL, 2006. 
[12] I. Buck, A. Lefohn, P. McCormick, J. Owens, T. Purcell, 
R. Strodka, “General Purpose Computation on Graphics 
Hardware”. IEEE Visualization 05, Minneapolis, USA, 2005. 
[13] D. L. Cook, J. Ioannidis, A. D. Keromytis, J. Luck, 
“CryptoGraphics: Secret Key Cryptography Using Graphics 
Cards”. RSA Conference, Cryptographer’s Track (CT-RSA), 
2005. 
[14] C. Su, T. Lin, C. Huang, C. Wu, “A High-Throughput 
Low-Cost AES processor”. IEEE Communications Magazine, 
vol. 41, no. 12, pp. 86-91, 2003. 
[15] J. Wolkerstorfer, E. Oswald, M. Lamberger, “An ASIC 
Implementation of the AES Sboxes”. RSA Conference 02, San 
Jose CA, 2002. 
[16] A. Hodjat, I. Verbauwhede, “Minimum Area Cost for a 30 
to 70 Gbits/s AES Processor”. IEEE Computer Society Annual 
Symposium on VLSI (ISVLSI 2004), Eerging Trends in VLSI 
System Design, pp 83-88, 2004. 

68


