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Abstract
Background: Searching for similarities in protein and DNA databases has become a routine
procedure in Molecular Biology. The Smith-Waterman algorithm has been available for more than
25 years. It is based on a dynamic programming approach that explores all the possible alignments
between two sequences; as a result it returns the optimal local alignment. Unfortunately, the
computational cost is very high, requiring a number of operations proportional to the product of
the length of two sequences. Furthermore, the exponential growth of protein and DNA databases
makes the Smith-Waterman algorithm unrealistic for searching similarities in large sets of
sequences. For these reasons heuristic approaches such as those implemented in FASTA and
BLAST tend to be preferred, allowing faster execution times at the cost of reduced sensitivity. The
main motivation of our work is to exploit the huge computational power of commonly available
graphic cards, to develop high performance solutions for sequence alignment.

Results: In this paper we present what we believe is the fastest solution of the exact Smith-
Waterman algorithm running on commodity hardware. It is implemented in the recently released
CUDA programming environment by NVidia. CUDA allows direct access to the hardware
primitives of the last-generation Graphics Processing Units (GPU) G80. Speeds of more than 3.5
GCUPS (Giga Cell Updates Per Second) are achieved on a workstation running two GeForce 8800
GTX. Exhaustive tests have been done to compare our implementation to SSEARCH and BLAST,
running on a 3 GHz Intel Pentium IV processor. Our solution was also compared to a recently
published GPU implementation and to a Single Instruction Multiple Data (SIMD) solution. These
tests show that our implementation performs from 2 to 30 times faster than any other previous
attempt available on commodity hardware.

Conclusions: The results show that graphic cards are now sufficiently advanced to be used as
efficient hardware accelerators for sequence alignment. Their performance is better than any
alternative available on commodity hardware platforms. The solution presented in this paper allows
large scale alignments to be performed at low cost, using the exact Smith-Waterman algorithm
instead of the largely adopted heuristic approaches.
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Background
Related works
Searching databases of DNA and protein sequences is one
of the fundamental tasks in bioinformatics. The Smith-
Waterman algorithm guarantees the maximal sensitivity
for local sequence alignments, but it is slow. It should be
further considered that biological databases are growing
at a very fast exponential rate, which is greater than the
rate of improvement of microprocessors. This trend
results in longer time and/or more expensive hardware to
manage the problem. Special-purpose hardware imple-
mentations, as for instance super-computers or field-pro-
grammable gate arrays (FPGAs) are certainly interesting
options, but they tend to be very expensive and not suita-
ble for many users.

For the above reasons, many widespread solutions run-
ning on common microprocessors now use some heuris-
tic approaches to reduce the computational cost of
sequence alignment. Thus a reduced execution time is
reached at the expense of sensitivity. FASTA (Pearson and
Lipman, 1988) [1] and BLAST (Altschul et al., 1997) [2]
are up to 40 times faster than the best known straight for-
ward CPU implementation of Smith-Waterman.

A number of efforts have also been made to obtain faster
implementations of the Smith-Waterman algorithm on
commodity hardware. Farrar [3] exploits Intel SSE2,
which is the multimedia extension of the CPU. Its imple-
mentation is up to 13 times faster than SSEARCH [14] (a
quasi-standard implementation of Smith-Waterman).

To our knowledge, the only previous attempt to imple-
ment Smith-Waterman on a GPU was done by W. Liu et
al. (2006) [4]. Their solution relies on OpenGL that has
some intrinsic limits as it is based on the graphics pipe-
line. Thus, a conversion of the problem to the graphical
domain is needed, as well as a reverse procedure to con-
vert back the results. Although that approach is up to 5
times faster than SSEARCH, it is considerably slower than
BLAST.

In this paper we present the first solution based on com-
modity hardware that efficiently computes the exact
Smith-Waterman alignment. It runs from 2 to 30 times
faster than any previous implementation on general-pur-
pose hardware.

The Smith-Waterman algorithm
The Smith-Waterman algorithm is designed to find the
optimal local alignment between two sequences. It was
proposed by Smith and Waterman (1981) [5] and
enhanced by Gotoh (1982) [6]. The alignment of two
sequences is based on the computation of an alignment
matrix. The number of its columns and rows is given by

the number of the residues in the query and database
sequences respectively. The computation is based on a
substitution matrix and on a gap-penalty function.

Definitions:

• A: a1a2a3….an is the first sequence,

• B: b1b2b3….bm is the second sequence,

• W(ai, bj) is the substitution matrix,

• Ginit and Gext are the penalties for starting and continuing
a gap,

the alignment scores ending with a gap along A and B are

Finally the alignment scores of the sub-sequences Ai, Bj
are:

where 1≤i≤n and 1≤j≤m. The values for E, F and H are 0
when i<1 and j<1. The maximum value of the alignment
matrix gives the degree of similarity between A and B.

An important point to be considered is that any cell of the
alignment matrix can be computed only after the values of
the left and above cells are known, as shown in Figure 1.
Different cells can be simultaneously processed only if
they are on the same anti-diagonal.

CUDA programming model
The two major GPU vendors, NVidia and AMD, recently
announced their new developing platforms, respectively
CUDA [7] and CTM [8]. Unlike previous GPU program-
ming models, these are proprietary approaches designed
to allow a direct access to their specific graphics hardware.
Therefore, there is no compatibility between the two plat-
forms. CUDA is an extension of the C programming lan-
guage; CTM is a virtual machine running proprietary
assembler code. However, both platforms overcome some
important restrictions on previous GPGPU approaches, in
particular those set by the traditional graphics pipeline
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and the relative programming interfaces like OpenGL and
Direct3D.

We selected NVidia GeForce 8800 and its CUDA platform
to design our Smith-Waterman implementation because

it is the first available GPU on the market capable of an
internal integer representation of data.

In CUDA, the GPU is viewed as a compute device suitable
for parallel data applications. It has its own device ran-
dom access memory and may run a very high number of
threads in parallel (Figure 2). Threads are grouped in
blocks and many blocks may run in a grid of blocks. Such
structured sets of threads may be launched on a kernel of
code, processesing the data stored in the device memory.
Threads of the same block share data through fast shared
on-chip memory and can be synchronized through syn-
chronization points. An important aspect of CUDA pro-
gramming is the management of the memory spaces that
have different characteristics and performances:

• Read-write per-thread registers (fast, very limited size)

• Read-write per-thread local memory (slow, not cached,
limited size)

• Read-write per-block shared memory (fast, very limited
size)

• Read-write per-grid global memory (slow, not cached,
large size)

• Read-only per-grid constant memory (slow but cached,
limited size)

CUDA architectureFigure 2
CUDA architecture. New CUDA compatible GPUs are implemented as a set of multiprocessors. Each multiprocessor has 
several ALUs (Arithmetic Logic Unit) that, at any given clock cycle, execute the same instructions but on different data. Each 
ALU can access (read and write) the multiprocessor shared memory and the device RAM.

Smith-Waterman data dependenciesFigure 1
Smith-Waterman data dependencies. Each cell of the 
alignment matrix depends on the cells on the left and above 
it. Independent data can be found only on the same anti-diag-
onal.
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• Read-only per-grid texture memory (slow but cached,
large size)

The proper choice of the memory to be used in each kernel
depends on many factors such as the speed, the amount
needed, and the operations to be performed on the stored
data. An important restriction is the limited size of shared
memory, which is the only available read-write cache.
Unlike the CPU programming model, here the program-
mer needs to explicitly copy data from the global memory
to the cache (shared memory) and backwards. But this new
architecture allows the access to memory in a really gen-
eral way, so both scatter and gather operations are availa-
ble. Gather is the ability to read any memory cell during
the run of the kernel code. Scatter is the ability to randomly
access any memory cell for writing. The unavailability of
scatter was one of the major limitations of OpenGL when
applied to GPGPU applications. The main point in
approaching CUDA is that the overall performance of the
applications dramatically depends on the management of
the memory, which is much more complex than in the
CPUs.

Results and discussion
Exhaustive tests have been performed to compare the
implementation of Smith-Waterman in CUDA with:

• the results of W. Liu as reported in his paper [4]. His
solution was implemented in OpenGL and was tested on
a NVidia GeForce 7900 GPU

• BLAST [1] and SSEARCH [14], running on a 3 GHz Intel
Pentium IV processor

• the results of the SIMD implementation by Farrar as
reported in his paper [3]. His tests were run on a 2.4 GHz
Xeon Core 2 Duo processor.

We have tested our solution on a workstation, having the
2.4 GHz Intel Q6600 processor and two NVidia GeForce
8800 GTX graphic cards. We have measured the perform-
ance by running the application both on single and on
double GPU configurations. By doubling the computing
resources we observed that the overall performance of the
application also doubles. This shows that the solution can
benefit from a nearly linear speed improvement when
adding more graphic boards to the system. It must be
mentioned that the Nvidia SLI option, available for multi-
GPU systems, is designed for OpenGL. Therefore, SLI
must be disabled for CUDA, which requires direct pro-
gramming of every installed GPU.

Smith-Waterman in CUDA vs. Liu's implementation
For this test five protein sequences of different length
(from 63 to 511 residues) were run against the SwissProt

database (Dec. 2006 – 250,296 proteins and 91,694,534
amino acids). The substitution matrix BLOSUM50 with a
gap-open penalty of 10 and a gap-extension penalty of 2
were used. The resulting MCUPS for each of the 5 query
sequences are shown in Table 1.

Liu obtained on the same sequences an average of 392.2
MCUPS and a peak of 533 MCUPS. Our solution on a sin-
gle GPU was completed in a time of 63.5 sec with an aver-
age of 1830 MCUPS and a peak of 1889 MCUPS. Our
implementation on two GPUs achieved a search time of
33.63 sec with an average of 3480 MCUPS and a peak of
3612 MCUPS. These results indicate that our implementa-
tion of Smith-Waterman is up to 18 times faster than that
of Liu.

Smith-Waterman in CUDA vs. BLAST and SSEARCH
For this test we used the same sequences, database and
substitution matrix described in the previous paragraph.
SSEARCH completed the search in 960 sec with an average
of 119.2 MCUPS and a peak of 123 MCUPS. BLAST com-
pleted the search in 53.3 sec with an average of 2018
MCUPS and a peak of 2691 MCUPS.

The execution times of our CUDA implementation were
up to 30 times faster than SSEARCH and up to 2.4 times
faster than BLAST, as shown in Figure 3 and Table 2.

Smith-Waterman in CUDA vs. Farrar's implementation
This last test was done running 11 sequences of different
length (from 143 to 567 residues) against the SwissProt
database (Rel. 49.1 – 208,005 proteins and 75,841,138
amino acids). The substitution matrix is the BLOSUM50
with a gap-open penalty of 10 and a gap-extension pen-
alty of 2.

Table 1: Smith-Waterman in CUDA running on single and 
double GPU vs. Liu's solution implemented in OpenGL

Sequence SW-Cuda* SW-Cuda** Weiguo Liu
Name Length MCUPS MCUPS MCUPS

O29181 63 1849 3561 197
P03630 127 1889 3612 317
P53765 255 1811 3428 428
Q8ZGB4 361 1810 3446 486
P58229 511 1795 3353 533

Substitution matrix used: BLOSUM50. Gap-open penalty: 10. Gap-
extension penalty: 2.
Database used: SwissProt (Dec. 2006 – 250,296 proteins and 
91,694,534 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 8800 
GTX
** Smith-Waterman in CUDA running on two NVidia GeForce 8800 
GTX
Page 4 of 9
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The Farrar's approach is based on the following consider-
ation: for most cells in the alignment matrix, F remains at
zero and does not contribute to the value of H. Only when
H is greater than Ginit + Gext will F start to influence the
value of H. So firstly F is not considered. Then, if required,
a second step tries to correct the introduced errors. Farrar's
solution completed the search in 161 sec with an average
of 1630 MCUPS and a peak of 2045 MCUPS. Our solu-
tion running on a single GPU turned in a slightly better

time of 154.95 sec with an average of 1783.3 MCUPS and
a peak of 1845 MCUPS. On two GPU devices the search
was completed in 79.65 sec with an average of 3792.2
MCUPS and a peak of 3575 MCUPS. The search times and
resulting MCUPS are shown in Figure 4 and Table 3.

Farrar's solution improves its performances on the longer
sequences, but on the average, it takes longer than our
solution running even on a single GPU. So Smith-Water-
man in CUDA is up to 3 times faster than Farrar's imple-
mentation.

Smith-Waterman in CUDA running on single and double GPU vs. Farrar's solutionFigure 4
Smith-Waterman in CUDA running on single and 
double GPU vs. Farrar's solution. Substitution matrix 
used: BLOSUM50. Gap-open penalty: 10. Gap-extension pen-
alty: 2.
Database used: SwissProt (Rel. 49.1 – 208,005 proteins and 
75,841,138 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 
8800 GTX
** Smith-Waterman in CUDA running on two NVidia 
GeForce 8800 GTX

Smith-Waterman in CUDA running on single and double GPU vs. BLAST and SSEARCHFigure 3
Smith-Waterman in CUDA running on single and 
double GPU vs. BLAST and SSEARCH. Substitution 
matrix used: BLOSUM50. Gap-open penalty: 10. Gap-exten-
sion penalty: 2.
Database used: SwissProt (Dec. 2006 – 250,296 proteins and 
91,694,534 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 
8800 GTX
** Smith-Waterman in CUDA running on two NVidia 
GeForce 8800 GTX

Table 2: Smith-Waterman in CUDA running on single and double GPU vs. BLAST and SSEARCH

Sequence SW-Cuda* SW-Cuda** Ssearch(Fasta) Blast
Name Length Time (s) MCUPS Time (s) MCUPS Time (s) MCUPS Time (s) MCUPS

O29181 63 2.98 1849 1.547 3561 46 119 3.7 1488
P03630 127 5.88 1889 3.075 3612 93 119 5.7 1948
P53765 255 12.31 1811 6.505 3428 184 121 11 2027
Q8ZGB4 361 17.44 1810 9.162 3446 275 114 16.3 1936
P58229 511 24.89 1795 13.326 3353 362 123 16.6 2691

Substitution matrix used: BLOSUM50. Gap-open penalty: 10. Gap-extension penalty: 2.
Database used: SwissProt (Dec. 2006 – 250,296 proteins and 91,694,534 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 8800 GTX
** Smith-Waterman in CUDA running on two NVidia GeForce 8800 GTX
Page 5 of 9
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Conclusions
Up to now the huge computational power of the GPUs
was hampered by the limited programming model of
OpenGL which is unsuitable for efficient general-purpose
computing.

The results of this work show that the new CUDA compat-
ible graphic cards are now advanced enough to be consid-
ered as efficient hardware accelerators for the Smith-
Waterman algorithm. High speed can be obtained with
the greatest sensitivity. But this work also opens interest-
ing perspectives as similar strategies of acceleration could
be applied to a number widely used algorithms in bioin-
formatics. Thus equal investments in terms of hardware
may lead to much better performances. Future work of our
team is planned in the direction of accelerating BLAST.

The source files of our Smith-Waterman implementation
are available at http://bioinformatics.cribi.unipd.it/cuda/.

Methods
Query-profile
When calculating Hij the value from the substitution
matrix W(qi, dj) is added to Hi−1, j−1. As suggested by
Rognes and Seeberg [9], to avoid the lookup of W(qi, dj)
in the internal cycle of the algorithm, we pre-compute a
query profile parallel to the query sequence for each pos-
sible residue.

The query profile, shown in Figure 5, can be considered as
a query-specific substitution matrix computed only once
for the entire database. The score for matching symbol A
(for alanine) in the database sequence with each of the
symbols in the query sequence is stored sequentially in
the first matrix row. The scores for matching symbol B are
stored in the next row, and so on.

In this way we replace random accesses to the substitution
matrix with sequential ones to the query profile. This solu-
tion exploits the cache of the GPU texture memory space
where the query profile is stored.

Smith-Waterman in CUDA
A great number of parallel threads have to be launched
simultaneously to fully exploit the huge computational
power of the GPU. The strategy adopted in our implemen-
tation in CUDA was to make each GPU thread compute

Query-profileFigure 5
Query-profile. Example of query profile for the protein 
029181. For each amino acid, a profile row is filled with the 
scores obtained matching that amino acid with the query res-
idues, based on the given substitution matrix.

Table 3: Smith-Waterman in CUDA running on single and double GPU vs. Farrar's solution

Sequence SW-Cuda* SW-Cuda** Farrar
Name Length Time (s) MCUPS Time (s) MCUPS Time (s) MCUPS

P02232 143 5.59 1845 2.95 3497 9 1149
P01111 189 7.59 1796 3.84 3551 10 1367
P05013 189 7.59 1796 3.84 3551 10 1367
P14942 222 8.84 1812 4.48 3575 12 1338
P00762 246 9.85 1802 5.01 3542 13 1369
P10318 362 14.71 1775 7.57 3450 15 1746
P07327 374 15.28 1766 7.86 3433 16 1691
P01008 464 18.96 1765 9.83 3405 18 1864
P10635 497 20.39 1758 10.43 3438 19 1892
P25705 553 22.83 1747 11.88 3358 19 2105
P03435 567 23.32 1754 11.96 3420 20 2045

Substitution matrix used: BLOSUM50. Gap-open penalty: 10. Gap-extension penalty: 2.
Database used: SwissProt (Rel. 49.1 – 208,005 proteins and 75,841,138 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 8800 GTX
** Smith-Waterman in CUDA running on two NVidia GeForce 8800 GTX
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the whole alignment of the query sequence with one data-
base sequence. As explained in the section about the
CUDA programming model, the threads are grouped in a
grid of blocks when running on the graphics card. In order
to make the most efficient use of the GPU resources the
computing time of all the threads in the same grid must be
as near as possible. For this reason we found it was impor-
tant to pre-order the sequences of the database in function
of their length. So when running, the adjacent threads will
need to align the query sequence with two database que-
ries having the nearest possible sizes.

Following is the optimal configuration of threads allow-
ing for the best performance:

• number of threads per block: 64

• number of blocks: 450

• total number of threads per grid: 28800

The ordered database is stored in the global GPU memory,
while the query-profile is saved into a texture. For each
alignment the matrix is computed column by column in

Kernel pseudo codeFigure 6
Kernel pseudo code. Each thread executes this code on a different database sequence. The pseudo-code for the Smith-
Waterman implementation is made up of the outer loop, which cycles on the database sequence characters, followed by the 
inner loop, which does the basic dynamic programming calculations.
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order parallel to the query sequence. To compute a col-
umn we need all the H and E values from the previous
one. We store them in the local memory of the thread. More
precisely, we use two buffers: one for the previous values
and one for the newly computed ones. At the end of each
column we swap them and so on. Local memory is not
cached, so it is very important to choose the right access
pattern to this space. The GPU is able to read and write up
to 128 bits of the local memory with a single instruction. So
each thread reads at once four H and four E values (16 bits
long) from the loading buffer plus the respective four val-
ues from the profile. It computes the four results for the
new column, then it stores them in the storing buffer. To
fully take advantage of the memory bandwidth of the
graphics card we package the profile in the texture, saving
four successive values (always minor than 255) into the
four bytes of a single unsigned integer. Thus, each thread
can gather all the data needed to compute four cells of the

alignment matrix with only two read instructions (one
from the local buffer and one from the texture).

Figure 6 has the pseudo code of the kernel executed by
each thread, while Figure 7 shows the interactions
between the local memory buffers and the query-profile to
compute the alignment matrix.

Before running Smith-Waterman, the implementation
automatically detects the number of computational
resources available. A dynamic load balancing is achieved
according to the number of devices and their computa-
tional power. The database is split in the same number of
segments as the number of GPUs. Each GPU then com-
putes the alignment of the query with one database seg-
ment. The size of the segment depends upon the power of
that GPU. The speed of each device is computed after
every alignment. A new partitioning of the database is
done for the successive query on the base of a weighted
average of the performances detected during previous
runs. Pre-fixed weights are used for the first run.

List of abbreviations used
CTM – Close To Metal

CUDA – Compute Unified Device Architecture

SIMD – Single Instruction, Multiple Data

GPU – Graphics Processing Unit

GPGPU – General Purpose computing on Graphics
Processing Unit

CPU – Central Processing Unit

CUPS – Cells Updates Per Second

SSE – Streaming SIMD Extensions
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Smith-Waterman in CUDA functioningFigure 7
Smith-Waterman in CUDA functioning. Each thread 
gathers four E and H values from the load buffer (first read 
operation) and four values from the profile (second read 
operation: the four values are packaged in a single unsigned 
integer of the query-profile). The Smith-Waterman algorithm 
is then applied to these data and the results are saved in the 
storing buffer (a single write operation). The alignment also 
requires two supplementary values: an f_north and an 
h_north. In this case, there is no need to save an entire col-
umn, but only two temporary numbers updated at each cell 
computation.
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