SmithWaterman-CUDA 1.92 User’s Guide

Svetlin Manavski | svetlin.a@manavski.com |

September 14, 2008

1 Introduction

In the Bioinformatics industry searching similarities in protein and genomic
databases has become a routine procedure while the amount of data being se-
quenced and made accessible for analysis is doubling every 12 months.

The Smith-Waterman algorithm [1], available for more than 25 years, is the
only one guaranteed to find the optimal local alignment.

SmithWaterman-CUDA allows to perform alignments between one or more
sequences and a database (all the sequences, even in the DB, are intended to be
proteinic).

The application dynamically performs load balancing among all the compu-
tational devices available on the machine. The user can decide how and which
resources to use as explained in 4.2.

SmithWaterman-CUDA computes the maximum value of the alignment be-
tween each query sequence and each sequence in the given database.

2 System requirements

2.1 Hardware

SmithWaterman-CUDA has some harware requirements that need to be ensured
before installing the application. This is the minimal configuration needed:

‘ SmithWaterman-CUDA hardware requirements ‘

GPU NVIDIA Gngrce 8600 or
superior
CPU Dual core
RAM 1 GB
MOTHER BOARD Pci-Express
| HARD DISK 200 MB of free space

2.2 Software

SmithWaterman-CUDA has also some software requirements that need to be
ensured before installing the application.

‘ SmithWaterman-CUDA Software Requirements

OPERATING
SYSTEM

Unix & Windows

DISTRIBUTION

- Linux Fedora Core 7
- Linux Fedora Core 8
- OpenSUSE 10.1, 10.2, 10.3
- Ubuntu 7.04, 7.10
- Red Hat Enterprise Linux 3
- Red Hat Enterprise Linux 4
- Red Hat Enterprise Linux 5.0 (32-bit and 64-bit)
- SUSE Linux Enterprise Desktop 10.0

- Windows XP

[LIBRARIES Qtd

OTHER CUDA Toolkit version 1.1

NVIDIA Driver with CUDA Support (169.09) (display driver)

For the installation of the CUDA run-time see A.

3 Installation

The installation involves 3 elements: the executable swcuda, a folder lib with 3
files (libQtCore.s0.4, libQtGui.so.4, libQtGui.s0.4.2.2) and a configuration file
named config.ini.
Put all of them into a new directory named swcuda. Then set and export
the LD LIBRARY PATH variable in the following way:
LD LIBRARY PATH=/home/username/swcuda/lib:/usr/local/cuda/lib/

export LD LIBRARY PATH
Above we have supposed two things:

1. the swcuda directory is placed in the user personal folder

2. CUDA has been installed in /usr/local

If in your case there is something different, change the LD LIBRARY PATH
setting in the right way.

4 Getting started

A complete comprehension of SmithWaterman-CUDA functionalities can be ob-
tain through an exhaustive explanation of the command line options and of the
configuration file that controls the application.

4.1 Command Line Options

SmithWaterman-CUDA has three simple command line options. The applica-
tion can be run with the following command:

./sweuda query sequences_ file database_file offset
Here there is an explanation:

1. query sequences_file: it is the file containing the sequences (at least one)
to align. It must be in fasta format and in the same directory of the exe-
cutable. If this option is not provided the application enters the interactive
mode and asks directly to the user to type the name of the file.

2. database_file: it is the database containing the sequence against which
those in the query sequences_ file have to be aligned. It must be in fasta
format and in the same directory of the executable. If this option is not
provided the application enters the interactive mode and asks directly to
the user to type the name of the file.

3. offset: the user can decide to start the alignment not from the first se-
quence in the query sequences_ file but from the offset one. The sequences
numeration is intended to start from zero.

All the output scores are saved in a single file but divided according to the query
sequence. The output file, that can be found into the output directory (4.2),
has a name composed by the query sequences_ file plus the database_ file plus
the date and hour of the run. The date and hour at the end of the file name
are important to avoid accidental overwriting.

4.2 The configuration file

A really important part of SmithWaterman-CUDA is represented by the configu-
ration file named config.ini. It must be in the same directory of the executable.
Through this, it is possible to control a lot of aspects of the execution of
SmithWaterman-CUDA, as for example the computational resources to be used.
The configuration file is composed by different fields that the user can set to
different values. Here there is the list of fields, values and their meanings.

CPU: this field takes an F (false) or a T (true) as value. Default: T. Through
this, the user can decide to use (T) the CPU to work on the alignments.

CPUNUM: this field takes a positive integer as value. Default: 1. Through
this, the user can set the number of CPU cores used. Obviously it doesn’t
make any sense to set CPUNUM=2 if ther CPU has only one core.

GPU: this field takes an F (false) or a T (true) as value. Default: T. Through
this, the user can decide to use (T) the GPU to work on the alignments.

GPUNUM: this field takes a positive integer as value. Default: 1. Through
this, the user can set the number of GPU used. Obviously it doesn’t make
any sense to set GPUNUM=2 if there is only one GPU.

MAT: it is the first algorithm-specific field. Default: BL50. Through this, the
user can set the substitution matrix used. At the moment there are three
possible choices: BL50 (for blosum50), BL62(for blosum62), BL90(for blo-
sum90) and DNAT1 (for identity, match = +5, mismatch = -4).

GAP_ FIRST: this field takes an integer as value. Default: 10. Through this,
the user can set the penalty for opening a gap.

GAP_ NEXT: this field takes an integer as value. Default: 2. Through this,
the user can set the penalty for extending a gap.

SCORES THRLD: this field takes a real number as value. Default: 0.
Through this, the user decides that only the alignment scores over this
threshold will be saved into the output file.

SCORES SCALING FACTOR: thisfield takes an F (false) or a T (true)
as value. Default: F. Through this, the user can decide to activate a kind
of normalization of the output scores. In fact, sometimes it could be sig-
nificant to divide the alignments scores by the one obtained aligning the
query sequence with itself (this alignment obviously gives the maximum
possible score).

OUTDIR: this field takes a string as value. Default: result. Through this,
the user can set the output directory where to save the alignments results.
The directory used for the output and whose name is given to this field
must be created before running the application.

SSE2: this field may be set to F (false, default) or T (true). When set to
T it enables an SSE2 implementation on the CPU which is much faster
than the common CPU implementation but it does not support COM-
PUTE_ENDPOSITIONS = T

COMPUTE ENDPOSITIONS: this field may be set to F (false, de-
fault) or T (true). When enabled it makes the software calculate end-
positions of the local alignment for both the query and the subject

As said in 1, when the user choices more than one computational device (GPU
or CPU), the application dynamically manages the load balancing according

to their number and their computational power. The database is splitted in
the same number of segments as the number of resources. Each device then
computes the alignment of the query with one database segment. The size of
the segment depends upon the power of that device. The speed of each resource
is computed after every alignment. A new partitioning of the database is done
for the successive query on the base of a weighted average of the performances
detected during previous runs. Pre-fixed weights are used for the first run.

5 Troubleshooting

In this section there are some suggestions to solve some problems that can be
encountered while using the application:

1. For instance, if you have a quad-core processor and two GPUs, you could
try to set CPUNUM=4 and GPUNUM=2 to fully exploit your computa-
tional power. But you will see that only two cores of the CPU will be
activated. This is not an error. In fact a consideration on the relationship
between CPU and GPU has to be done. Each GPU used to compute align-
ments needs to be managed by an idle core of the CPU. Thus in the case
above, two cores of the CPU manage the two GPUs and the remaining
two are available for computation.

2. With sequence longer than 400 residues it is necessary to use at least a
core of the CPU. Serious problems could be encountered if this warning
was unheard.

3. Trying to run the application, a message like this “NVIDIA: could not
open the device file /dev/nvidiactl (No such file or directory).” means
that drivers for the NVIDIA GPUs are not installed.

4. Trying to run the application, a message like this “error while loading
shared libraries: ” means that the variable LD LIBRARY PATH
has not been correctly set and exported. See 3.

5. The application can manage queries with a maximum lenght of 2050
residues. This is due to a limitation on the available local memory of
the GPU. The user can gather all the queries above this threshold using
(only for these) SmithWaterman-CUDA without any GPUs activated.

5.0.1 Double GPU

An important detail for the troubleshooting section is represented by the prob-
lem that can occur trying to run the application with more than one
GPU.

It could happen that SmithWaterman-CUDA finds from zero to one GPU.
To solve the problem try to insert two boostrap kernel parameters: wupper-
mem=524288 and vmalloc=256M.

6 The output file

As said before, SmithWaterman-CUDA computes the maximum value of the
alignment between each query sequence and each sequence in the given database.
All the output scores are saved in a single file but divided according to the query
sequence.

The output file, that can be found into the output directory (4.2), has a
name composed by the query sequences_file plus the database file plus the
date and hour of the run. The date and hour at the end of the file name are
important to avoid accidental overwriting.

Suppose that we are aligning the file query.fasta with the DB uniprot.fasta
at 17.23.05 on the 19/07/2007. The output file will be created in the output
directory with the name query wuniprot 17 23 05 19 07 2007.out. If in the
query file we have two sequences (029181 and P03630) the output file will be
like in the following figure.

For each query the user can find the alignment scores with the entire DB
ordered by descending order. If option COMPUTE ENDPOSITIONS is set to
true than two more columns apper in the output file: Q END (endpoint local
elignment in the query) and S_END (endpoint local elignment in the subject)

7 A simple example

In this section we describe a simple example that can guide the user while using
SmithWaterman-CUDA.

Suppose, as in 6, that we have two queries (029181 and P03630) in the file
query.fasta and the DB in the file uniprot.fasta. Both the files are in the same
directory of the executable. Furthermore, suppose also that we want to align
only the second query using 1 core of the CPU, 1 GPU, the blosum50 matrix,
an opening penalty equal to 10, an extension penalty equal to 2, an output
directory called out and using the normalization of results saving only those
ones above 0.08.

Start setting the configuration file in a proper way:

1. CPU=T

2. CPUNUM=1

3. GPU=T

4. GPUNUM=1

5. MAT=BL50

6. GAP_FIRST=10

SCORE NAME

0.789474 029181 |¥1084 ARCFU UPFO165 protein AF 18
09.433584 029931|¥314 ARCFU UPFB165 protein AF 0831
0.426065 029926 |Y¥319 ARCFU UPFE1e5 protein AF 031
0.4083509 029178 |¥1087 ARCFU UPFO1l65 protein AF 18
0.401003 029139 |¥1074 ARCFU UPFO165 protein AF 18
0.385965 029173 |¥1092 ARCFU UPFO165 protein AF 18
0.383459 029170 |¥1095 ARCFU UPFO165 protein AF 18
8.370927 028071 |¥2212 ARCFU UPFO165 protein AF 22
0.363409 029175|¥1090 ARCFU UPFO1le5 protein AF 108

LL

QUERY N° 1 -> |gekisklsl| COAT BPPPY Coat protein - Bacteriophage

SCORE NAME

B.797194 PB3630 | COAT _BPPP7 Coat protein - Bacteri
0.084184 083KI4 |MDTC_SHIFL Multidrug resistance p
0.084184 P76399|MDTC ECOLT Multidrug resistance p
0.084184 Q7ACM1 |MDTC_ECO57 Multidrug resistance p
0.032908 Q92I38|5YFE_RICCN Phenylalanyl-tRNA synt
B8.082908 Q8FGE3 |MDTC ECOLE Multidrug resistance p
B8.082908 O8NFM4 |ADCY4 HUMAN Adenylate cyclase typ

Figure 1: A typical SmithWaterman-CUDA output file.

QUERY N® 1 -> [gsk{sklsl| COAT BEPPP7 Coat protein - Bacteriophag

SCORE NAME

B.797194 PB3630 | COAT _BPPP7 Coat protein - Bacteri
0.084184 083KI4 |MDTC_SHIFL Multidrug resistance p
0.084184 P76399|MDTC ECOLI Multidrug resistance p
0.084184 Q7ACHM1 |MDTC_ECO57 Multidrug resistance p
0.082908 Q92I38|5YFE_RICCN Phenylalanyl-tRNA synt
0.082908 QE8FGE3 |MDTC ECOLE Multidrug resistance p
B.082908 O8NFM4 |ADCY4 HUMAN Adenylate cyclase typ

Figure 2: The outfile in the example above.

7. GAP_NEXT=2

8. SCORE_THRLD=0.08

9. SCORE_SCALING _FACT=T
10. OUTDIR=out

To proceed and complete the alignment, use the following command . /smithwaterman
query.fasta uniprot.fasta 1. If the run has been done at 17.23.05 on the 19/07/2007,

in the directory out you can find the file query wuniprot 17 23 05 19 07 2007.out
that looks like this:

References

[1] Bio Sequence Database Scanning on GPU, W. Liu, B. Schmidt, G. Voss, A.
Schroder, W. Muller-Wittig.

[2] http://developer.nvidia.com/object/cuda.html.

A Installing CUDA run-time

Follow the instructions at
http://www.nvidia.com/object /cuda_ get.html

